1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Adam Wilkins edited this page 2025-02-07 09:51:12 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement discovering to improve thinking abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential differentiating function is its reinforcement learning (RL) action, which was utilized to improve the model's reactions beyond the standard pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adjust more successfully to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's geared up to break down complex questions and reason through them in a detailed way. This guided thinking process permits the model to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation model that can be incorporated into numerous workflows such as agents, rational thinking and information analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, enabling effective inference by routing queries to the most pertinent specialist "clusters." This method allows the model to focus on different issue domains while maintaining general efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid damaging material, and examine designs against essential security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, create a limit boost request and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Set up authorizations to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful content, and assess designs against crucial security criteria. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 design.

The model detail page supplies vital details about the model's capabilities, prices structure, and application guidelines. You can discover detailed use directions, including sample API calls and code snippets for combination. The model supports numerous text generation tasks, including content production, code generation, and concern answering, using its support finding out optimization and CoT thinking abilities. The page also includes implementation options and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a variety of instances (between 1-100). 6. For example type, choose your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production deployments, you might desire to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the deployment is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive interface where you can explore various prompts and adjust design specifications like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For example, content for inference.

This is an exceptional method to explore the model's reasoning and text generation capabilities before integrating it into your applications. The play ground provides instant feedback, assisting you comprehend how the model responds to different inputs and letting you tweak your triggers for optimum outcomes.

You can quickly check the model in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 convenient techniques: using the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you pick the technique that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model web browser displays available models, with details like the supplier name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals key details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to see the model details page.

    The model details page consists of the following details:

    - The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you deploy the design, it's advised to examine the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the automatically produced name or create a custom-made one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting proper circumstances types and counts is vital for expense and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment procedure can take a number of minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this moment, the design is ready to accept reasoning requests through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is complete, you can conjure up the model utilizing a SageMaker runtime customer and archmageriseswiki.com incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed implementations area, find the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative options using AWS services and sped up calculate. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the reasoning performance of large language designs. In his downtime, Vivek takes pleasure in treking, enjoying films, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing options that help consumers accelerate their AI journey and unlock service worth.